Ph.D in Agricultural and Environmental sciences-XXXII cycle

Development of diagnostics techniques for studying quarantine plant pathogens

Ph.D. student: Chiara Aglietti

Ph.D. coordinator: Prof. Giacomo Pietramellara Supervisor: Prof. Paolo Capretti Co-supervisors: Dott. Alberto Santini Dott. Nicola Luchi Dott.ssa Luisa Ghelardini

2016/2019

Thesis collaboration

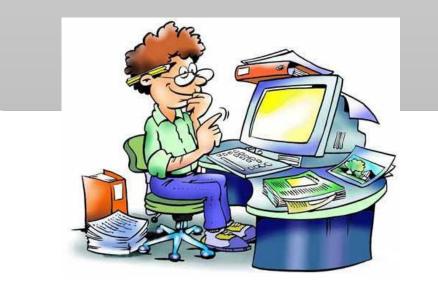
This thesis was realized thanks to the collaboration of:

- Prof. Paolo Capretti and Dott.ssa Luisa Ghelardini (DAGRI, University of Florence)
- Dott. Nicola Luchi and Dott. Alberto Santini (IPSP-CNR, Sesto F.no, Firenze)

-

 Dott.ssa Caterina Villari (Warnell school of Forestry and Natural resourches, University of Georgia, Athens, GA, USA)

A part of the work was made in her lab (stage in Athens, GA, USA for 6 months)


Prof.ssa Maria Teresa Ceccherini (DAGRI, University of Florence) who provided lab supplies to finish some parts of this work

Thesis production

From the work carried out in this thesis:

4 manuscripts were retrieved:

- 1 published
 - 1 in press
- 1 submitted
 - 1 writing

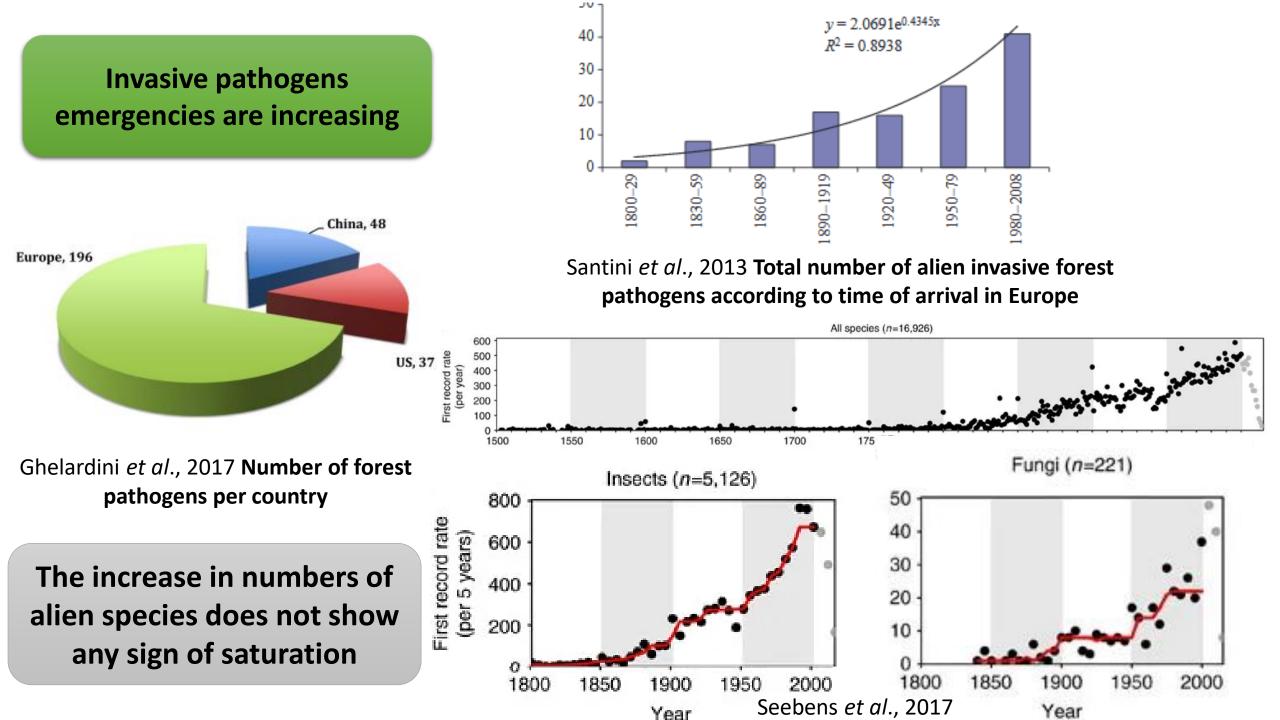
General topic of this thesis

The study has dealt with the development and improvement of field-suitable early detection diagnostics tools for the control and management of invasive plant pathogens

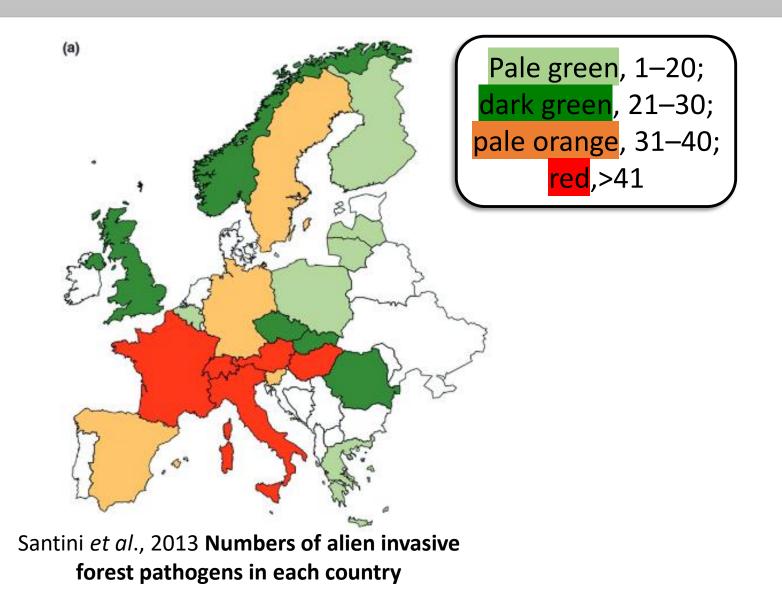
Main attention on forest pathogens but also crop pathogens and pathogens damaging nurseries environments were included

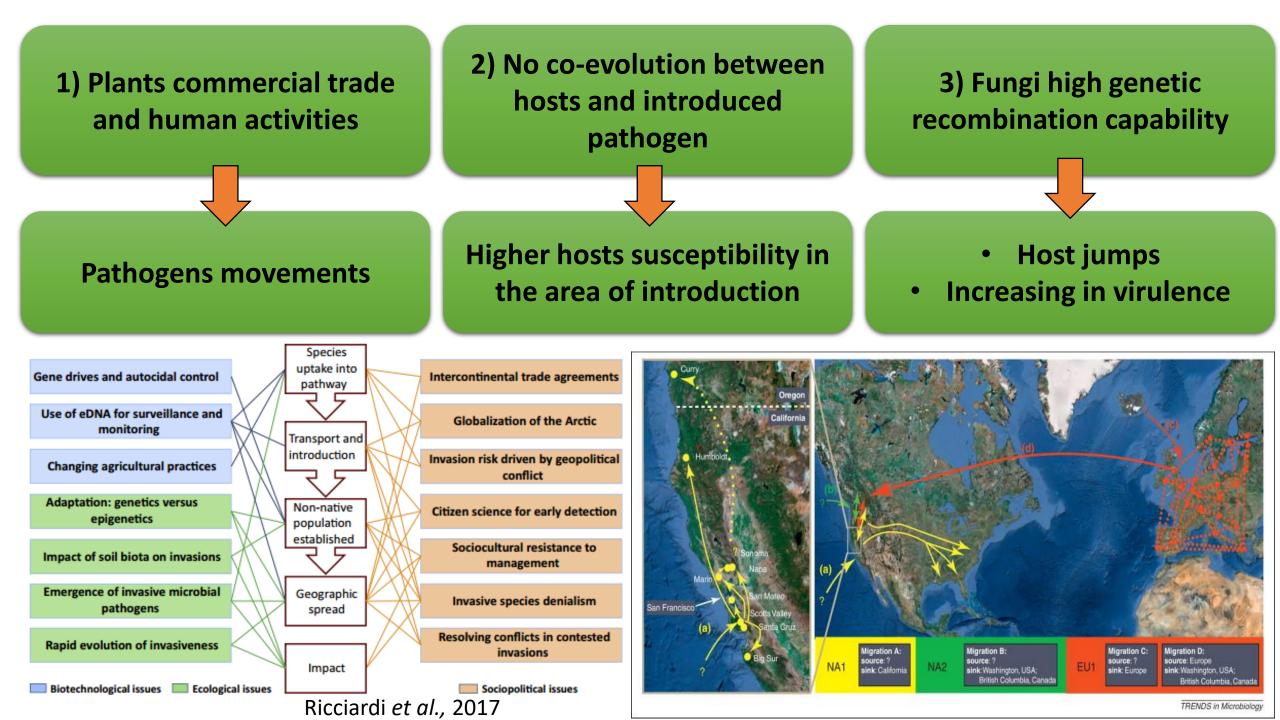
Invasive plant pathogens: risks and threats

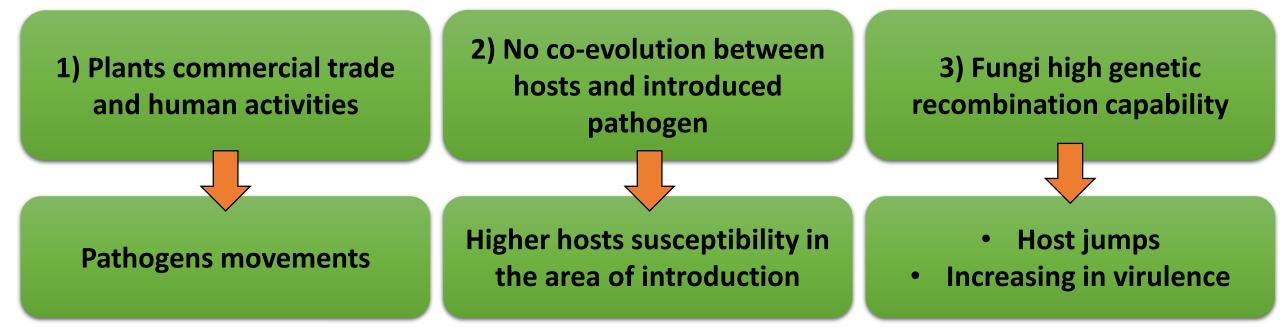
Phytosanitary emergencies caused by invasive pathogens:

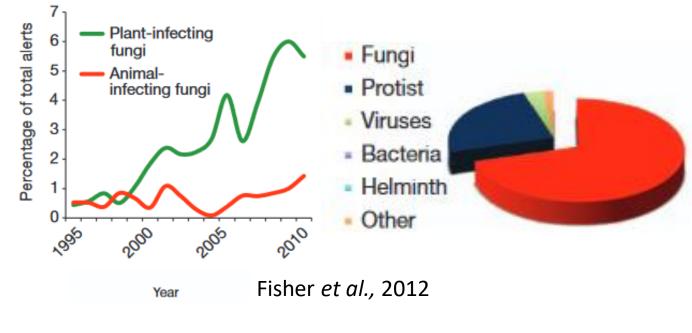

Have always conditioned human history

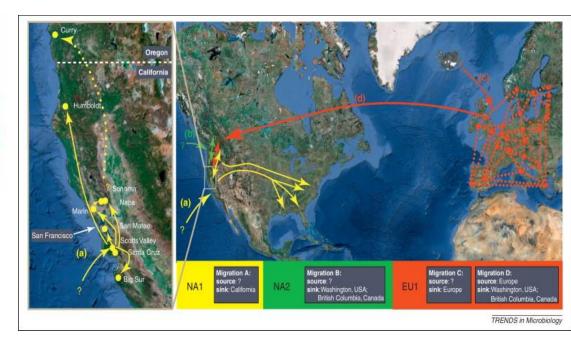
Twentieth century:

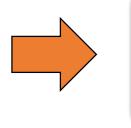

Dutch elm disease,
 Ophiostoma novo-ulmi subsp.
 americana from North
 America to Europe
 Chestnut blight, Cryphonectria
 parasitica from Asian chestnut
 to the east coast of USA

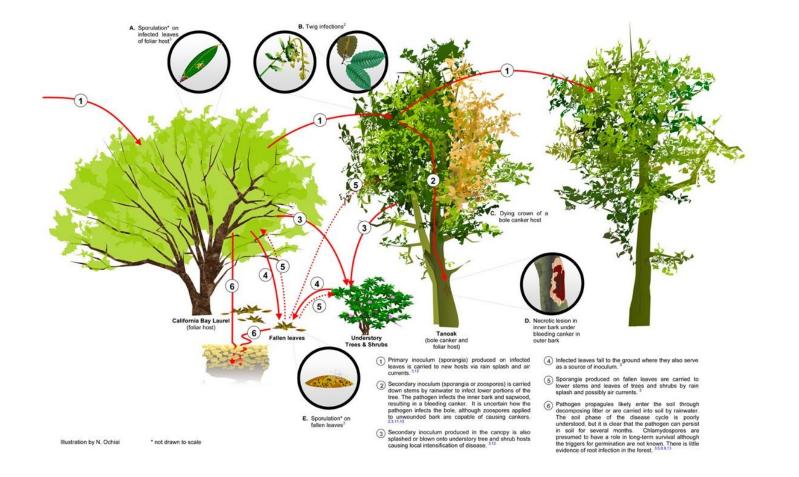

Nineteenth century: Irish potato famine as a consequence of *Phytophthora infestans* introduction from South America

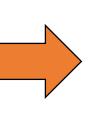





According to Daisie-Delivering Alien invasive species in Europe (2018), **Italy** is one of the most damaged countries due to biological invasion with the presence of more than 1500 alien species






1) Spread in natural ecosystems

Ecosystem changes, biodiversity and ecosystem services losses

2) Economic damages

Plant nurseries, forestry, urban forestry, crops

Category	Nonindigenous species	Losses and damages	Control costs	Total
MICROBES	20,000			
Crop plant pathogens		21,000	500	21,500
Plant pathogens in lawns, gardens, golf courses		NA	2000	2000
Forest plant pathogens		2100	NA	2100
Dutch elm disease		NA	100	100

Pathogens have reduced crop productivity causing losses of at least 10% of global food production (Donoso *et al.*, 2018)

Pimentel *et al.*, 2005 Estimated annual costs associated with some alien species introduction in the United States (x millions of dollars) It was estimated that approximately US\$ 2.1 billion in forest products are lost each year due to alien forest pathogens in the US (Pimentel *et al.*, 2005)

EU regulation about invasive plant pests

The EU had an open-door phytosanitary system

Any plant that is not specifically regulated was enabled to be imported (the attention was focused on a small number of pests compared to the high number of regulated organisms)

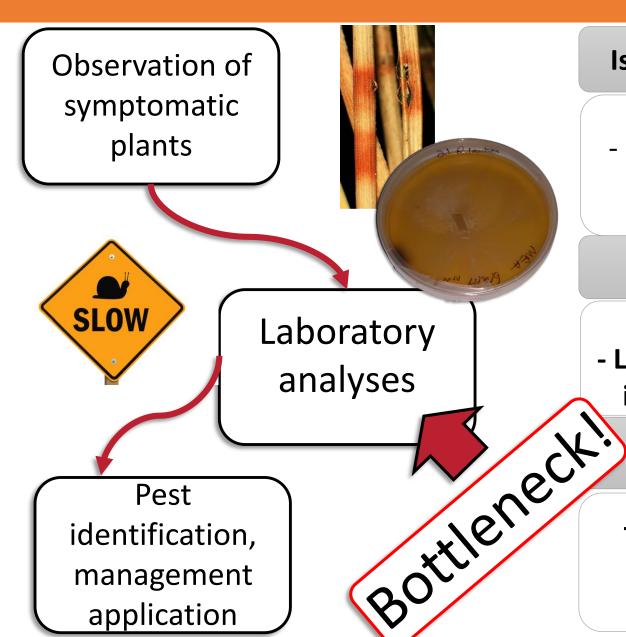
Inspections were generally limited to visual examinations of aerial parts in few time (incipient infections were not recognized especially in tissues/soil/roots)

From the 14th of December 2019 this regulation has changed:

All plants (including living parts of plants) need a phytosanitary certificate to enter in the EU Lists of high risk plants (introduction provisionally prohibited)

Priority pests (selection based on high risk of spreading and establishment)

Improving management: early detection


Statement by Commissioner Andriukaitis on the entry into force of the new Plant Health Regulation

> Early detection of plant pests, better action plans for eradication, higher surveillance rules for the import of high risk plants, enhanced rules for the certification of plant products are among the new provisions which will make sure that we deal in a timely and swift manner from the potentially devastating effects of some plant diseases.

> > These critical points claim for better diagnostic tools!! Possibly characterized by:

High sensitivity and specificity: facilitate the application of effective control and eradication measures Rapid, simple and portable: To be applied inspections at ports of entry, nurseries environments, in urban and or natural ecosystems

Diagnostic tools for plant pathogens identification

Isolations and culture on selective media

Difficulties:

Microorganisms difficult to isolate and to correctly identify ; - Specialized skills; -Time consuming;

Immunoassays (LFD, ELISA...)

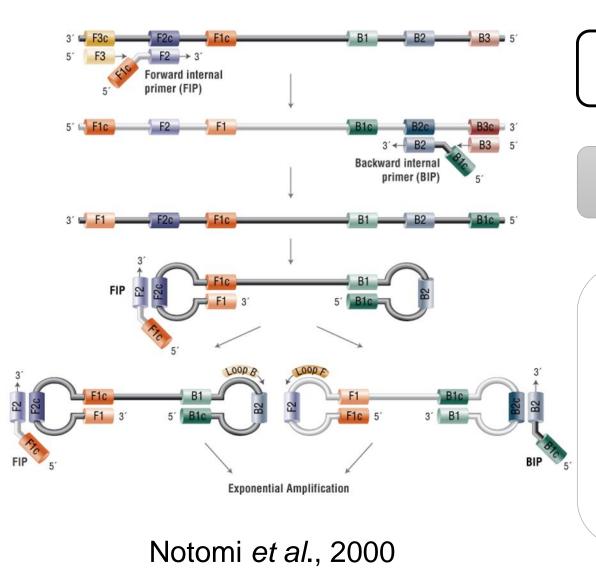
Difficulties:

 Low sensitivity; - Further tests required to identify the pathogen at a species level

DNA-based methods (PCR...)

 The best as sensitivity and specificity;
 <u>Difficulties:</u> - They need a lab to be applied; - Specialized skills

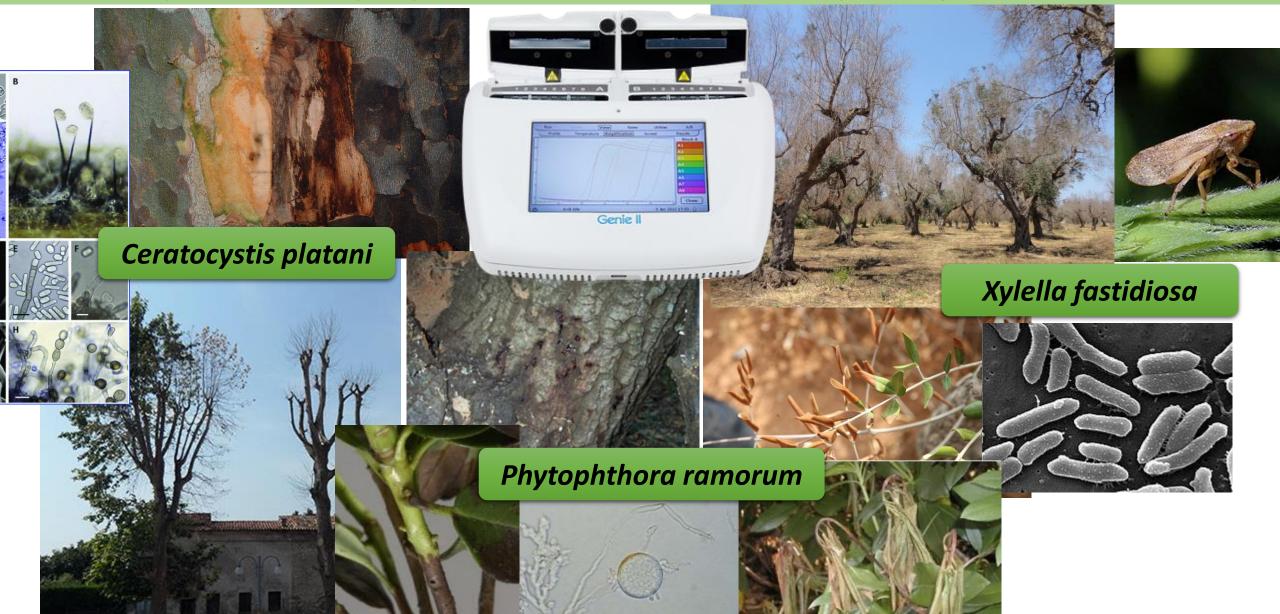
Moving from lab into the field using DNA-based methods



- Reduce delays between results obtaining and control measures application;

- Maintaining high sensitivity, specificity and accuracy;
- Applicable in nurseries, at the borders, in forests and cities;
- For preventing, monitoring and controlling pathogens spread

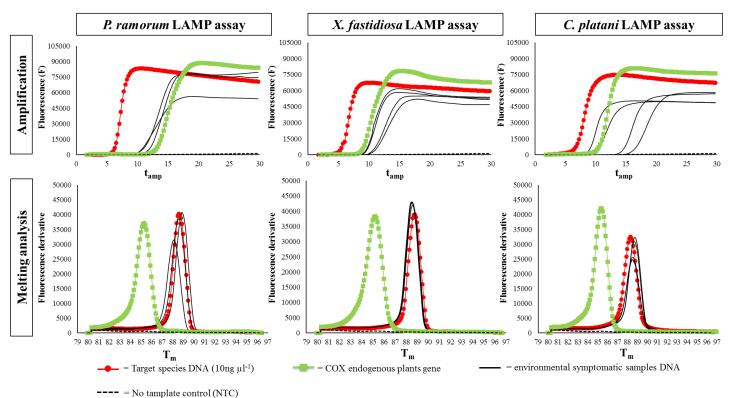
Development and optimization of Loop-mediated isothermal AMPlification (LAMP)-based assays



We can use LAMP

Benefits than a PCR-based method:

- Isothermal reaction (Constant temperature): no thermocycler needed
 - Resistant enzymes: it can works with unpurified DNA
 - Results in 30 minutes
 - Portable instruments


Conventional LAMP reaction optimization: the case of *Ceratocystis* platani, Phytophthora ramorum and Xylella fastidiosa

ORIGINAL ARTICLE

Real-time loop-mediated isothermal amplification: an early-warning tool for quarantine plant pathogen detection

Chiara Aglietti^{1,2}, Nicola Luchi^{1*}, Alessia Lucia Pepori¹, Paola Bartolini¹, Francesco Pecori¹, Aida Raio¹, Paolo Capretti² and Alberto Santini¹

Main methods:

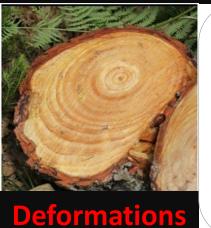
- Sequences alignments and BLAST analysis
- Target DNA regions selected
- Six LAMP Primers were designed for each species (F3, B3, LoopF, LoopB, FIP, BIP) (Notomi *et al.* 2000; Nagamine *et al.* 2002)
- Sensitivity and specificity tests
- Test on DNA from infected plants

Main results:

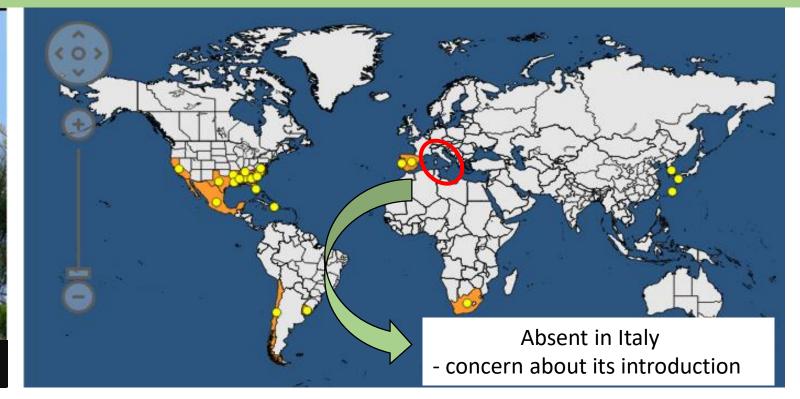
- Specific and sensitive
- Rapid (30min) and user-friendly tools for applying diagnosis at point-of-care

Main problems:

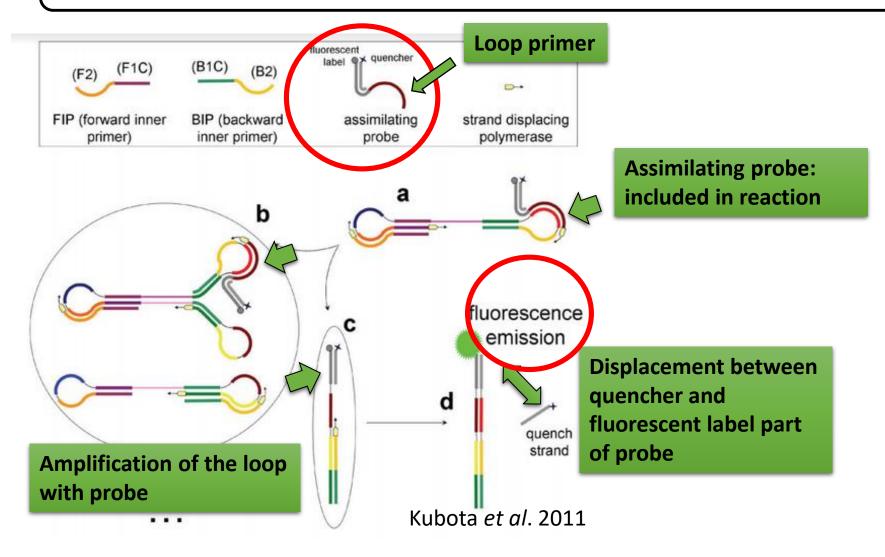
- Conventional LAMP reaction uses large amplicons (>200bp)
- Fluorescence measured as a SYBRGREEN
- Can not distinguish between species that differs for few DNA bases (e.g.2)


Open Access

AMB Express


Improving the specificity of a LAMP assay: the case of F. circinatum

Copious resin flow Damping off


Serious threat to pine forests (especially *on Pinus radiata* plantations) High damages in nurseries

Main issue for its diagnosis: specificity

- Great deal of *Fusarium* species diversity
- Differentiated one from the other with few DNA nucleotides

Solve the specificity problem using LAMP probes

Advantages:

- Fluorescence is given only when the short sequence of the selected Loop primer is amplified
- Can distinguish between species that differ for few DNA nucleotides

BioTechniques

Real-time loop mediated isothermal amplification assay for a rapid detection of *Fusarium circinatum*

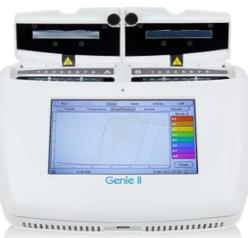
Dagmar Stehlíková^{1,2}, Nicola Luchi², Chiara Aglietti ^{2,3}, Alessia Lucia Pepori², Julio Javier Diez Casero⁴, Alberto Santini²

¹ University of South Bohemia Faculty of Agriculture - Biotechnological Centre Na Sadkach 1780 CZ-37005 Ceske Budejovice

² Institute for Sustainable Plant Protection - National Research Council (IPSP-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino (Firenze), Italy

³ Department of Agrifood production and Environmental Sciences (DISPAA), University of Florence, Piazzale delle Cascine 28, 50144, Firenze, Italy

⁴ Universidad de Valladolid Escuela Técnica Superior de Ingenierías Agrarias, Campus Yutera Edificio E, despacho 204. 34071, Palencia, Spain


Corresponding author: Nicola Luchi, Institute for Sustainable Plant Protection - National Research Council (IPSP-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino (Firenze) Italy. Email: <u>nicola.luchi@ipsp.cnr.it</u>

IN SCIENCE AND TECHNOLOGY

Main methods:

- Sequences alignments and BLAST analysis
- Target DNA regions selected
- Conventional LAMP design: Six LAMP Primers were designed for each species (F3, B3, LoopF, LoopB, FIP, BIP) (Notomi *et al.* 2000; Nagamine *et al.* 2002)
- Probe-based LAMP design: loop primers specificity analyzed, probe designed following Kubota *et al.*, 2011
- Sensitivity and specificity tests (with and without probe→ comparison)
- Test on DNA from infected plants

Fungal species

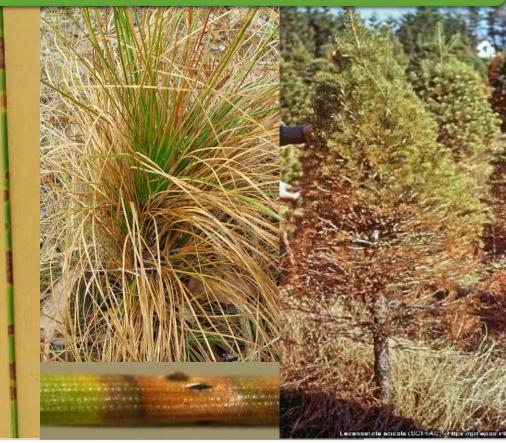
9

10

Isolate provided and assessed in the framework of COST Action FP1406 Pinestrength

Ta - annealing temperature

qLAMP **cLAMP**


5 6 7 8	F. torulosum F. tricinctum species complex F. verticillioides	Do_US_VC_5_1* Do_US_Sno_49_1* LSVM873*	USA USA France	Seed of P. menziesii Seed of P. menziesii Z. mays	WSL – Phytopathology WSL – Phytopathology R. Ioos			_
3 4	F. temperatum F. thapsinum	LSVM889* LSVM870* NRRL 22045*	France unknown	Z. mays Z. mays unknown	R. Ioos K. O'Donnell	88.63(16:45)	+ + + 	F. temperatum
Page 15 of 1 2	16 F. subglutinans	LSVM869*	France	BioTechniques	R. loos	88.13(20:30)		
43 O 44 45 46			https://mc04.m	anuscriptcentral.com	/fs-btn			
³⁹ 40 41 42 42	F. sporotrichioides	Do_US_Nat_32_1*	USA	Seed of P. menziesii	WSL - Phytopathology			begoni
40 5	F. sacchari F. sororula	NRRL 13999* CMW 25254 *	unknown Colombia	unknown Pinus spp.	K. O'Donnell G. Fourie	88.74(15:30)		fractica
	F. reticulatum negundis E. cacebari	FI-BOS/14-1*	Switzerland	Seed of Picea sp.	WSL – Phytopathology	-		
32 33 34 35 36 37 38	F. redolens	Do-D/11-1*	Switzerland	Seed of P. menziesii	WSL - Phytopathology	-		mangif
36 0	F. proliferatum	FGSC 7421*	Dominican Republic	Musa sp.	M Pasquali	•		
35	F. pininemorale	CMW 25267* CMW 25243 *	Colombia	Pinus patuta P. tecunumanii	G. Fourie	88.53(16:00)		parviso
34.2	F. oxysporum F. parvisorum	CSF-16* CMW 25267*	Spain (Palencia) Colombia	P. pinea Pinus patula	A. Sanz-Ros G. Fourie	88.33(16:00)		-
³² 33 E	F. nygamai	NRRL 13448*	unknown Spain (Balancia)	unknown B. mines	K. O'Donnell			pininen
	F. marasasianum	CMW 25261 *	Colombia	Pinus patula	G. Fourie	88.33(14:00)		• •
26 27 28 29 30 31	F. mangiferae	NRRL 25226*	unknown	unknown	K. O'Donnell	88.43(23:15)		were re
29 0	F. incarntum-equiseti species complex	Do_US_Nat_3_1*	USA	Seed of P. menziesii	WSL - Phytopathology	-		
28 0	F. graminearum	Do-Mur/17-1*	USA	Seed of P. menziesii	WSL - Phytopathology	-		LAMP
27 0	F. fractiflexum F. fujikuroi	NRRL 28852* LSV667*	unknown France	Zea mays	R. Ioos	87.83(17:30)		LAMP
25 26 9	F. fracticaudum	CMW 25245 •	Colombia	P. maximinoi unknown	G. Fourie K. O'Donnell	88.43(18:15)		
24	F. culmorum	CSF-14*	Palencia (Spain)	P. pinea	A. Sanz-Ros	-		• With th
23	F. concentricum	NRRL 25181*	France	unknown	K. O'Donnell	88.33(20:45)		1
22	F. begoniae	LSV293*	France	Begonia elatior	R. loos	88.53(15:45)		develo
21	F. actimination F. avenaceum	Do_US_Nat_2_1*	USA	Seed of P. menziesii	WSL - Phytopathology			
20	F. circinatum F. acuminatum	2028* Do_US_VC_49_1*	Chile USA	P. radiata Seed of P. menziesii	R. Ahumada WSL – Phytopathology	88.73(12.15)	+ +	were an
18 LL	F. circinatum	310/061*	Asturias (Spain)	P. palustris	M. Berbegal	88.83(11.15)	+ +	
	F. circinatum	07/0649 1b*	Asturias (Spain)	P. pinaster	M. Berbegal	88.83(12.00)	+ +	• Only F
9 10 11 12 13 14 15 16 17	F. circinatum	822*	Galicia (Spain)	P. pinaster	M. Berbegal	88.83(11.30)	+ +	$\bullet Omly \ E$
15 5	F. circinatum	253*	Galicia (Spain)	P. nigra	M. Berbegal	88.83(12.15)	+ +	
14 .S	F. circinatum F. circinatum	164• 221•	Asturias (Spain) Cantabria (Spain)	P. sylvestris P. radiata	M. Berbegal M. Berbegal	88.73(12.45) 88.73(11.15)	+ $+$ $+$ $+$	
12 13	F. circinatum	116•	Galicia (Spain)	P. nigra	M. Berbegal	88.83(10.30)	+ + + + +	
	F. circinatum	CSF-13*	Valladolid (Spain)	P. pinaster	A. Sanz-Ros	88.83(10.45)	+ +	
			(opens)		A. Saliz-Ros	88.73(11.00)		
10 5	F. circinatum	CSF-12*	Valladolid (Spain)	P. sylvestris	A. Sanz-Ros	88 73/11 000	+ +	

Main results:

- Only *F. circinatum* and *F. temperatum* were amplified with the probe-based developed LAMP (qLAMP)
- With the conventional developed LAMP (cLAMP) many other species were recognized (F. sororula, F. pininemorale, F. subglutinans, F. parvisorum, F. marasasianum, F. mangiferae, F. fujikuroi, F. fracticaudum, F. concentricum, F. begonia)

Application of LAMP probes for multiplexing: the case of *Dothistroma* septosporum, D. pini and Lecanosticta acicola

Lecanosticta acicola

- Similar symptoms
- Similar morphology
- Co-occurrence
- Quarantine species in many countries
- Severe foliage
 disease on pine
 needles

Dothistroma pini, D. septosporum

Screen any combination of two of the three pathogens at the same time Direct in-field application Rapid response to threats

PAPER III

Manuscript

Development and optimization of sequence-specific LAMP assays to target

Dothistroma pini, D. septosporum and Lecanosticta acicola needle blights

Aglietti et al.

This work was realized in collaboration with Villari C.¹ and Barnes I.²

1 Warnell School of Forestry & Natural Resources, University of Georgia, Athens, Georgia, United States

2 Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa

Main methods:

- Development and optimization of qLAMP for *D*. • septosporum, D. pini and Lecanosticta acicola as previous described
- Probes were marked with different dyes (FAM • and TAMRA) to allow multiplex reaction: targeting more pathogens in the same reaction
- Preliminary multiplexing tests following Kubota • *et al.*, 2015

Main results:

- High specific and sensitive (singleplex), also on • needles samples
- Efficiency of TAMRA also on the portable • instrument
- Preliminary multiplexing results: each DNA was • correctly amplified and recognized when included in the same reaction
- Further tests needed for multiplexing • optimization.

14th -15th March: Crossnore, North Carolina, USA, Forest pathology and entomology seminar

September 2019: Sipav congress, Milano; LIFE ARTEMIS conference Lubiana, Slovenia

Application of molecular tools to study plant pathogens

Assessing the presence of quarantine pathogens: the case of *Dothistroma septosporum, D. pini* and *Lecanosticta acicola* in Italy

The only reports in Italy were based on morphological identification (uncertain) Models analyzing climatic conditions in Italy found the area suitable for *Dothistroma* spread

Symptoms observed on naturally regenerated forests of *Pinus spp*.

MANAGEMENT OF BIOLOGICAL INVASIONS

International Journal of Applied Research on Biological Invasions

Management of Biological Invasions manuscript MBI19-064-ARTEMIS Short Communication

In press

Molecular detection of Dothistroma Needle Blight in protected pine forests in Italy

Luisa Ghelardini^{1,2}, Chiara Aglietti¹, Paolo Capretti¹, Matteo Cerboneschi^{1,3}, Alessandra Gionni¹,

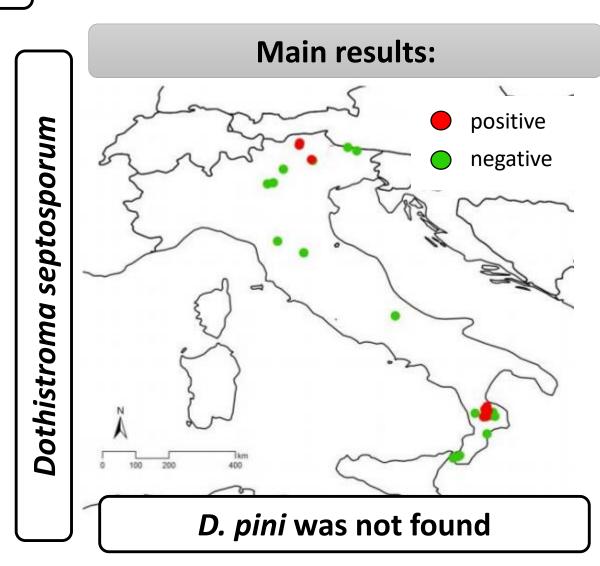
Emanuele Goti, Francesco Loria, Giorgio Maresi⁴, Salvatore Moricca¹, Guido Marchi¹

¹ Dipartimento di Scienze e Tecnologie Agrarie, Alimentari Ambientali e Forestali, Università degli studi di Firenze, Piazzale delle Cascine 18, 50144 Firenze, Italy

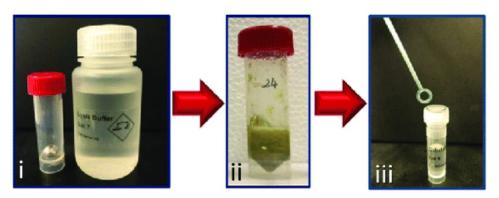
² Istituto per la Protezione Sostenibile delle Piante IPSP CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy

³ NextGenomics, Via Imbriani, 85 50019 – Sesto Fiorentino, Italy

⁴ Dipartimento Innovazione, Unità Protezione delle Piante Agroforestali e Apicoltura, Centro di Trasferimento Tecnologico, Fondazione Edmund Mach, San Michele all'Adige, Italy

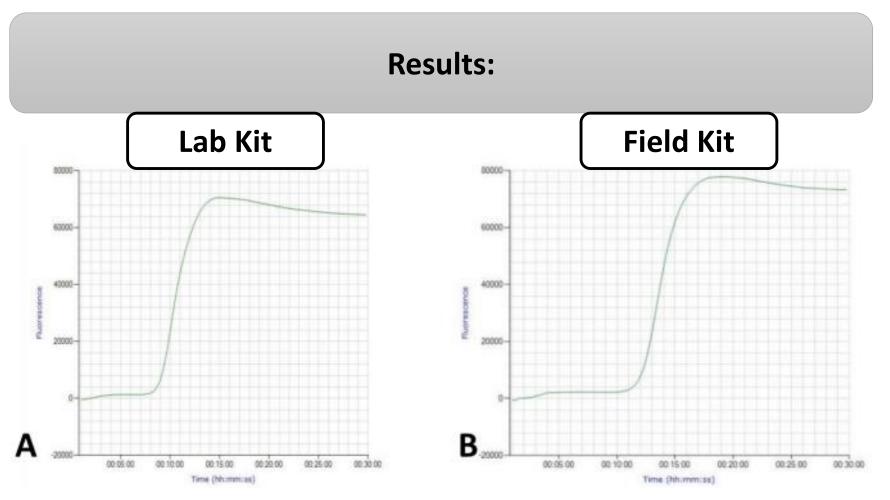

Corresponding author: luisa.ghelardini@unifi.it

Main methods:


Pine needles analysis with speciesspecific real time PCR (Ioos *et al.*, 2010)

Transferring diagnosis into the field: rapid and simple DNA extraction methods

The majority of LAMP-based assays developed so far for plant pathogens are still elusive regarding integrating the entire process from sample preparation to visualization of results having as the main problem applying DNA extraction in field conditions



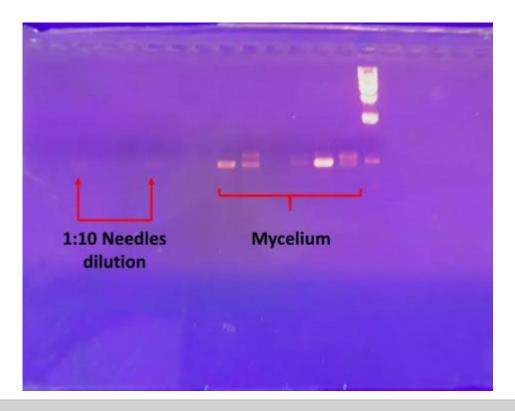
- Rapid (5min); simple: few reagents
- Difficult with a large number of samples

Methods:

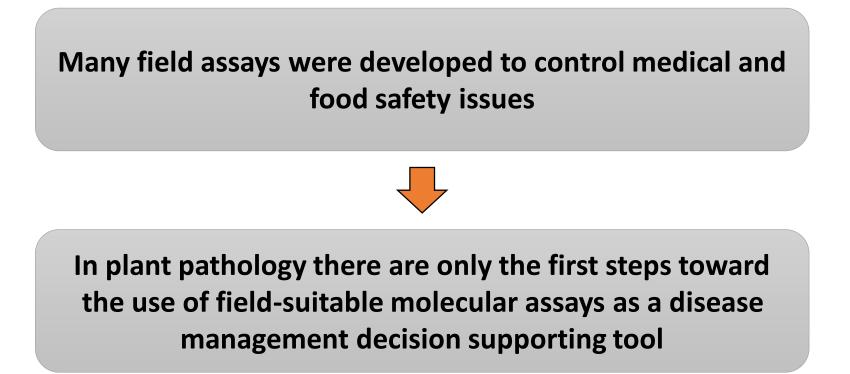
- Extraction with the field kit of the same plant samples used in Paper I and extracted with the lab kit (*X. fastidiosa*, *C. platani*, *P. ramorum* cLAMP optimization)
- Each sample was processed on LAMP with primers detecting COX (cythocrome oxidase) plant gene and primers developed for each species (*X. fastidiosa*, *C. platani*, *P. ramorum*)→ comparison between lab and field kit

- Same amplification results were obtained by processing on LAMP DNA extracted with both kit
- Same results in shorter time directly in the field (5min vs 1hour)

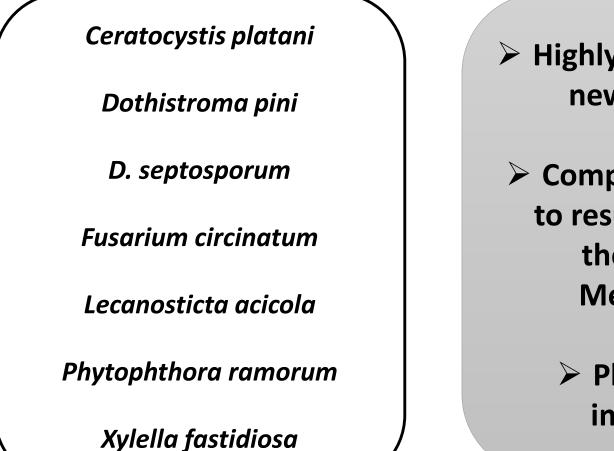
A critical disadvantage for a field-suitable diagnostic method: the absolute requirement for DNA extraction → difficult to perform in resource limited settings Omitting DNA extraction step using LAMP: reducing the costs and analysis time


2) Crude extraction optimization, preliminary tests and results

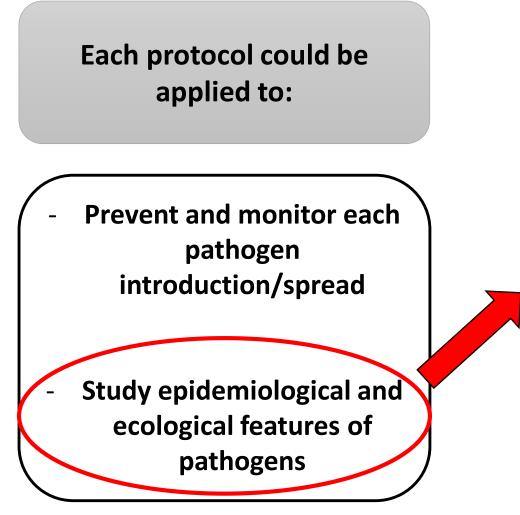
- Mikita *et al.*, 2014 Direct Boil-LAMP; Tomlinson *et al.*, 2013 crude extractions
- Test from minced mycelium and pine needles
- Lysis buffer + incubation at 85°C for 20min
- Amplifiability test by using PCR (ITS4-ITS5) and visualizing products on agarose gel (1%)



Regione Toscana


- Good preliminary results
- Further research needed to improve efficiency and field-usability

Conclusions: state of the art


Conclusions: obtained results

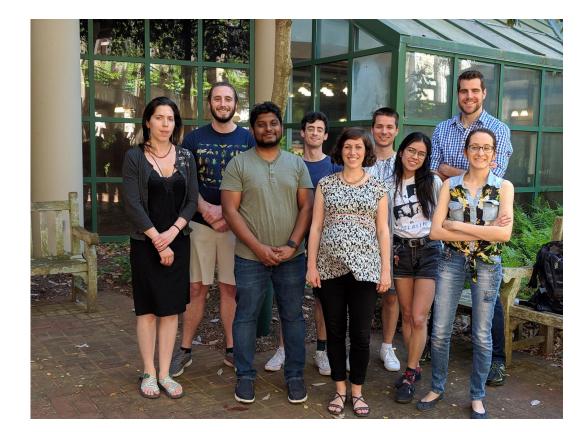
7 LAMP assays were developed in this study for important plant pathogens

> Highly specific and sensitive, improved also with new LAMP technology (assimilated probes) Rapid (30 min) > Completely field-suitable (from DNA extraction to results analysis), applied on-site in Firenze for the detection of *C. platani* and in Tuscany Mediterranean areas recently assessed as infested by X. fastidiosa > Phytosanitary controls, check exportedimported plants (nurseries, at borders..)

Conclusions: future perspectives

LAMP probes based assays allow to:

- Have higher specificity → studying X. fastidiosa subspecies distribution (development of subspecies-specific assay)
- 2) Working as a quantitative assay → analysing inoculum in naturally infected sites (e.g. airborne spores concentration for D. septosporum....)


Aknowledgments

- Supervisor and co-supervisors
- Prof.ssa Maria Teresa Ceccherini
- Prof. Guido Marchi
- Dott. Matteo Cerboneschi
- Prof.ssa Caterina Villari
- Dott. Afaq Niyas
- Dott. Jeff Hamilton

PS2

