

Study of Rootstock-Scion Interactions in Grapevine

Ph.D. in AGRICULTURAL AND ENVIRONMENTAL SCIENCES

CYCLE XXXII

Ph.D. student: Alessandra Zombardo

Tutor: Prof. Giovan Battista Mattii

Final Discussion – Florence, 28-02-2020

Viticulture & Climate change

"Wine is proving to be a canary in the coalmine for climate change" Goode, Nature 2012

Wine districts: 30° - 50° North latitude, 30°- 50° South latitude

 \rightarrow Crop very sensitive to deviations in climate,

need of specific temperatures for vegetative development, despite phenotypic plasticity

Suited areas: semi-arid climates, with possible events of drought and water deficit

<u>Global warming</u>: Viticulture expanded to new cool-climate districts, problems for quality wine-producing countries!

 \rightarrow up to 56% of current wine-growing lands may no longer be suitable for vineyards if the planet warms by 2°C (PNAS)

«Viticulture by its nature is complicated. As the world's climates are transformed, it is only becoming more so»

The New York Times

A snapshot of European viticulture in 2050. Red: drought areas; green: suitable areas; blue: new potential areas. Adapted from Hannah (*et al.*, 2013).

The impact of climate change on grapevine

Severe multiple summer stresses: strong effects on grape quality → irregular yields, decoupling of technological and phenolic maturity, atypical aroma profiles...

Adaptive strategies:

- 1) Modifications of viticultural techniques
- 2) Modifications of plant materials:
- grapevine CVs/clones
- Exploitation of **ROOTSTOCKS**

Example of climate change damage on cultivated grapevines

ROOTSTOCK: required against phylloxera

from 1863, France \rightarrow vine epidemic, vineyard devastation in EU

Daktulosphaira vitifoliae (US): soil dwelling aphid, feeds solely on Vitis species

• American Vitis: almost resistant, leaf lesions

 V. vinifera and Eurasian Vitis: high radical sensitivity, formation of nodosities/tuberosities
 Stop H₂O/mineral uptake, stop source/sink translocation
 → rapid decline of vigour leading to plant death

Solution: GRAFTING!

Resistant root system (hybrids of American Vitis)

Shoot of Vitis vinifera

→ Composite vine: 2 genotypes merged – 1 final phenotype

"The bug that almost ended wine"

Symptoms of phylloxera attack on leaf or roots

A composite vine

Rootstock-scion interaction

The rootstock can confer to the scion additional positive traits → enhanced tolerance to different kind of abiotic stresses (drought, water deficit)

GRAFTING: surgical union welding of graft junction reconnection of vascular system

Transcriptomic reorganization:

Longitudinal sections and tomography views of Omega graft zones, Pinot gris on 110 Richter (Deloire *et a*l., 2019)

→ differential expression of huge number of genes, effective through out the vine's life
 → grafting triggers defense and stress response mechanisms (phenylpropanoid pathway)
 (Corso et al., 2015; Berdeja et al., 2015; Maré et al., 2016; Chitarra et al., 2017)

Molecular interaction networks: STILL LARGELY UNKNOWN Few info about the influence on grape quality

Recent evidence:

- Macromolecules are mobile through graft union (mRNAs, miRNAs) (Yang et al., 2015; Pagliarani et al., 2017)
- Phloem: pathway for the systemic translocation of macromolecules → long-rang movement, exchange of information between tissues (MarMarin-Gonzales *et al.*, 2012)

AIM OF THE PROJECT

Investigate the rootstock influence on grape quality in conditions of optimal irrigation or water deficit using an integrated molecular and biochemical approach

Research Labs:

CREA – Research Centre for Viticulture and Enology (Arezzo)

CREA – Research Centre for Genomics and Bioinformatics (Fiorenzuola d'Arda – PC)

EXPERIMENTAL SYSTEM @CREA-VE Arezzo set up to simulate the growing conditions of a real vineyard → advantages over open field trials

- Plastic pots filled by clay-loam texture soil (Chianti Classico district Tuscany)
- Adult vines in the pots: cv Pinot noir, clone ENTAV 115
- Training: upward vertical shoot positioned trellis, spur cordon pruning Placement in rows, orientation N-S, outdoor area
- Irrigation: drip emitters, regulated water supply
- Experimental design: randomized blocks with 9 repetitions per each root system

ROOT SYSTEMS CONSIDERED

- 1) P: 1103 Paulsen (Vitis berlandieri x V. rupestris Paulsen, 1865) high vigor, drought-tolerant
- 2) M: M 101-14 (V. riparia x V. rupestris Millardet and De Grasset, 1882) low vigor, drought-sensitive
- 3) NGC: not grafted vines (control)

Rootstock	Resistance to phylloxera	Limestone tolerance	Drought tolerance	Vigour	Stagnation tolerance	Salinity tolerance
1103 Paulsen	* * * *	17%	* * * *	****	* * *	***
Mgt 101-14	* * * *	9%	**	* *	* * *	***

Cosmo, 1958 Palliotti et al., La nuova viticoltura, 2015

Ph.D. Research work built on:

RINGO

"Rootstock-scion INteraction in Grapes: an Omics perspective" Italian – Israeli bilateral project

2012-2013: TRANSCRIPTOMICS by Next-Generation Sequencing

 → Elaboration and implementation of already obtained data (qRT-PCR)
 → Enrichment of <u>PHENOTYPING</u> about grape quality

<u> 2018:</u>

Same experimental protocol of 2017 + pre-veraison water stress trial

<u> 2017:</u>

Same conditions of RINGO alongside molecular (qRT-PCR) and chemical analyses (HPLC) → accurate measurements on vine phenology, physiology, productivity

Transcriptomic and biochemical investigations support the role of rootstock-scion interaction in grapevine berry quality

Zombardo A, Crosatti C, Bagnaresi P, Bassolino L, Reshef N, Puccioni S, Faccioli P, Tafuri A, Delledonne M, Fait A, Storchi P, Cattivelli L, Mica E

Research paper accepted for publication on *BMC Genomics*

BMC Series

Methods

Pot system: vines maintained in equal agronomic conditions, with abundant water supply

2 growing season: 2012, WARMER (1450 GDDs - DOY 92-235) 2013, COOLER (1276 GDDs - DOY 92-236)

Berry sample collections: Veraison = T1 Maturity = T2

18 samples *per* each vegetative season (3 root systems x 2 ripening times x 3 biological replicates)

Separation of berry skins

Analysis of transcriptional and biochemical scenario:

- RNA- and small RNA-seq analyses + gene expression by qRT-PCR
- Chemical analyses (HPLC) → accumulation of phenolic compounds

Illumina RNA-Sequencing

36 RNAseq libraries constructed with total RNAs → Quality filtered reads mapped to Vitis vinifera 12x25 reference genome

Sample correlation Samples at T1 separated from samples at T2, independently from the year

Other results:

• Within each developmental group (T1 and T2): clear distinction 2012/2013

• T2: not grafted plants (NGC) grouped together, divided by grafted vines

PCA of the 36 samples in the RNA-seq dataset

PC1: 76% variance

Differential expression analyses

DEGs in 6 comparisons: from 0 to 2247

Two major trends in both years:

• lower number at T1, higher at T2

• Grafted vines (M and P) were more similar to each other than to NGC vines

• 2012

T1: most genes were up-regulated in NGC compared to M or P, no differences between grafted vines

T2: most genes were down-regulated in NGC compared to M or P. Among grafted, most genes were up-regulated in P compared to M \rightarrow subsequent analyses on DEGs.

· 2013

the variability among samples not sufficient to perform additional analyses on DEGs \rightarrow less stressful environmental conditions?

MapMan and GO enrichment analyses

performed to evaluate metabolic pathways and cellular functions among DEGs

T1: DEGs mainly related to photosynthesis. Most up-regulated genes in NGC

T2: DEGs related to secondary metabolism, stress response, hormonal regulation. Most up-regulated genes in P

T2: DEGs related to TFs (including many miRNA predicted targets) **Up-regulated in P**

Results confirmed by GO terms!

BA Ethylene

ABA BA Ethylene

Light

Differences in the expression of genes involved in the cellular metabolism visualized by MapMan.

Gene expression (qRT-PCR)

- 10 genes selected to validate RNA-seq data
 → involved in the phenylpropanoid pathway:
 5 structural genes
 (PAL, DFR, F3'H 2 isoforms, FLS)
 5 coding for transcription factors
 (MYBC2-L3, MYB14, MYB4R1, NAC44, NAC60)
- → The fold change values confirmed RNA-seq results and technique

Interesting results:

- DFR: more expressed in P and M at T2 → higher anthocyanins concentration in skins at maturity (accordance with HPLC results)
- MYB14: feedback regulation of resveratrol synthesis. Up-regulated in P at T2 (doubled): higher trans-piceid concentration in P
 → greater tolerance to drought?

Scatter Plot showing correlation between log2FC obtained via RNAseq (Y axis) and qRT-PCR (X axis) data.

Expression profiles of DFR and MYB14 genes (qRT-PCR). Ct value with $2^{-\Delta\Delta Ct}$ method.

Illumina smallRNA-Sequencing

36 small RNA-seq libraries constructed from total RNAs

Library size distibutions: peaks 21 - 24 nt → lengths consistent with DICER derived products

Clean and trimmed reads compared to all plant species miRNAs deposited in miRBase → 159 (2012)/164(2013) annotated MIR families, all 48 grapevines MIR families retrieved

Correlation:

Samples primarily divided by the year effect

Moreover:

separation grafted/not grafted, then separation T1/T2

PCA of the 36 samples in the smallRNA-seq dataset

M.P.NGC-

M.P-

2012

NGC

2012_NGC -2012_P - T1 2012_P - T2 2012_M - T1 2012_M - T2

2013_NGC - T2 2013_P - T1 2013_P - T2 2013_M - T1

• 2013 M - T2

2013

12 -

10

HCA of the 36 samples sequenced by smallRNA-seq

miRNA Differential Expression Analysis

2012:

- Strongest differences in grafted vs NGC
- Almost all DE miRNAs more expressed in NGC, both at T1/T2
- Few DE miRNAs between M and P

2013: Reduced number of DE miRNAs → less stressful environmental conditions?

Venn diagrams of DE miRNAs in the three root systems. A, B = 2012; C, D = 2013.

Small RNA in silico target identification

DE miRNA, both T1/T2 \rightarrow miRNAs regulating secondary metabolism and stress response

- mir858: known to be master regulator of TFs
- \rightarrow 34 MYB genes in grapevine berries predicted as targets
- → MYB174,MYB175,MYB13 identified as DE in M vs NGC and P vs NGC
- \rightarrow opposite expression profiles of MYB target genes in RNA-seq and mir858
- → miR858 confirmed as negative regulators of MYB TFs expression

Journal of Experimental Botany, Vol. 70, No. 18 pp. 4775–4791, 2019 doi:10.1093/jxb/erz264 Advance Access Publication May 30, 2019 This paper is available online free of all access charges (see https://academic.oup.com/jxb/pages/openaccess for further details)

RESEARCH PAPER

miR828 and miR858 regulate VvMYB114 to promote anthocyanin and flavonol accumulation in grapes

Varsha Tirumalai^{1,2}, Chenna Swetha^{1,2}, Ashwin Nair^{1,2}, Awadhesh Pandit¹, and Padubidri V. Shivaprasad^{1,*, ©}

qRT-PCR for some miRNAs: data of RNA-seq not confirmed. Presence of isomiR (1-2 nt shorter) more expressed? Primers not able to distinguish!

Grape phenolic composition (HPLC)

- Main discriminating factor: grape ripening stage → general phenolic composition very different at T1/T2
- Year effect: 2012/2013 separated at T2
- T2: grafted more similar compared to NGC

Other results (2012, only - ANOVA):

PCA of the 36 samples based on their chemical composition

• T1: higher diversity in the accumulation of several phenolic compounds between M, P, and NGC

 Anthocyanins: greater similarity between M and P → high concentration of anthocyanins (total and disubstituted) → up-regulation of DFR

Resveratrol: trans-piceid detected as significantly different at T2 in P vines
 → up-regulation of MYB14

Influenza del portinnesto sul metabolismo secondario di uve Pinot nero

Zombardo A, Mica E, Puccioni S, Bassolino L, Perria R, Mattii GB, Cattivelli L, Storchi P

Poster presented @Enoforum 2019 – Vicenza

Extended abstract published on www.infowine.com Internet Journal of Viticulture and Enology, 2019:1/10

<u>GROWING SEASON 2017</u>: SAME CONDITIONS OF RINGO PROJECT \rightarrow All the vines under optimal irrigation (midday stem Ψ above -1,0 MPa)

AIM: Check additional differences or confirm the previous results between the root systems considered

Results:

- No water stress or drought damage, despite hot vegetative season
- No differences in phenology, gas exchange, photosynthetic efficiency
- No differences in yield and technological maturity
- → Absence of limiting factors: no rootstock-effect on vine's primary metabolism

HPLC \rightarrow some differences confirmed in the accumulation of secondary metabolites

- Anthocyanin profile: alterations due to the rootstock
 - $P \rightarrow$ higher concentration of disubstituted anthocyanins
- Differences in other phenolic compounds:
 - $P \rightarrow$ Higher concentration of trans-piceid (resveratrol)

qRT-PCR \rightarrow 10 genes involved in secondary metabolism, DE mainly at maturity

Berry quality of grapevine under water stress as affected by rootstock-scion interactions through gene expression regulation

Zombardo A, Mica E, Puccioni S, Perria R, Valentini P, Mattii GB, Cattivelli L, Storchi P

Research paper in preparation for publication on *Agronomy - Special Issue "Tackling Grapevine Water Relations in a Global Warming Scenario"*

GROWING SEASON 2018

Pre-veraison water stress trial (DOY185 – DOY210) Berry growth phase I

3 Irrigation Protocols:

Severe Water Deficit (WS-1; 25% of field capacity)
 Intermediate Water Deficit (WS-2; 40% of field capacity)
 Control (WW; 90% of field capacity)

Graphic representation of the double sigmoid pattern of berry development (Coombe, 2001).

AIM: To test the rootstock influence on plant physiology and grape quality in the event of water shortage

Measurements on grapevine physiology: leaf gas exchanges, chlorophyll fluorescence

• Yield, Technological maturity, phenolic compound contents by HPLC

• Grape sampling for qRT-PCR analyses on genes and miRNAs (harvest): WS-1 e WW, only

Water status (midday Ψ stem)

WS-1 and WS-2 → water status alterations during the trial (DOY 194 – DOY 208), recovery when water supply restored

WW \rightarrow more uniform values

Root systems: no rootstock influence

Photosynthetic efficiency (Fv/Fm)

Identical starting conditions (DOY 184)

During water stress: significantly lower in WS-1 and WS-2

After water stress (DOY 221):

restored values, slightly lower in the vines that suffered from water deficit

Root systems: no significant differences

Leaf Water Potentials (Ψ stem, MPa) in adult leaves

Chlorophyll fluorescence (Fv/Fm) in adult leaves

Leaf gas exchange

Before water stress (DOY 184): similar behavior

During water stress: (DOY 194 – DOY 208) WS-1 and WS-2: sharp drop in stomatal conductance (gs), net photosynthesis (A), transpiration (E)

<u>After</u> water stress: (DOY 221 – DOY 232) The vines resumed their functionality, at a lower level than *pre*-stress conditions

185

Stomatal conductance (gs), Net Assimilation (A), Leaf Transpiration (E), in adult leaves

Root system:

- Statistically significant effect on gas exchanges only at the beginning of water stress trial
- \rightarrow In general, NGC showed better performances

91

210

232

Yield and technological maturity assessment

Production traits:

no alteration caused by water supply or root system

Technological maturity:

- The water supply significantly affected sugar content, titratable acidity, pH
- The root system <u>did not affect the primary metabolism</u> \rightarrow previous results confirmed

	Yield <i>per</i> vine		Clusters <i>per</i> vine		Average cluster weight		рН		Titratable acidity	9	Sugars	
	g		n		g			£	g/L tartari acid	c	° Brix	
Root system												
M	1028	а	12,4	а	79,31	а	3,21	а	5,69	а	20,7	а
Ρ	872	а	10,3	а	74,95	a 3,19		а	5,73	а	20,2	а
NGC	715	а	9,1	а	75,04	а	3,17	а	5,62	а	21,0	а
Water protocol												
WS-1	943	а	11,4	а	79,59	а	3,30	с	5,35	а	22,4	с
WS-2	768	а	10,2	а	72,81	а	3,20	b	5,32	а	21,0	b
WW	904	а	10,2	а	76,89	а	3,07	а	6,38	b	18,5	а
-												
Root system	ns		ns		ns		ns		ns		ns	
Water protocol	ns		ns		ns		***		* * *		***	
A x B	ns		ns		ns		ns		ns		ns	

Production parameters and technological analyses at harvest

Phenolic compound contents

Method: Di Stefano and Cravero (1991), total extracts of berry skin and seeds

- → Significant differences in total skin anthocyanins
- → Significant differences in total skin polyphenols
- \rightarrow Significant differences in total seed polyphenols

Due to root system and water supply

→ Higher contents in case of water stress, and due to grafting on P rootsock

	Skin anthocyanins		Skin polyphenols		Seed polyphenols				
	mg/Kg grapes		mg/Kg grapes	mg/Kg grapes					
Root system									
M	871	а	1556	а	4117	а			
P	1034	b	1753	b	4872	b			
NGC	945	ab	1583	а	4188	а			
Water Protocol									
WS-1	1146	с	1738	b	4782	b			
WS-2	1002	b	1798	b	4431	b			
WW	703	а	1357	а	3963	а			
Root system	*		*		**				
Water protocol	***		* * *		**				
AxB	ns		ns	ns					
						_			

Berry phenolic compound contents at harvest.

Anthocyanin profiles

• Trisubstituted or disubstituted anthocyanins: significantly different contents

- ightarrow due to both water supply and root system
- WS-2/WW and P:
- \rightarrow highest content in trisubstituted anthocyanins (higher malvidin-3-G)

• WS-1 and M/NGC:

 \rightarrow highest content of disubstituted anthocyanins (higher cyanidin and peonidin-3-G)

	Delphindin		Delphindin		Delphindin		Delphindin		Delphindin		Cyanidin		Petunidin		Peonidin		Malvidin		Trisubstituted anthocyanins		Disubstituted anthocyanins		Trisubstituted Disubstituted Ratio	
	%		%		%		%		%		%		%											
Root system																								
M	4,47	b	2,21	b	6,25	b	29,15	b	57,93	а	68,64	а	31,36	b	2,21	а								
Ρ	3,69	а	1,43	а	5,56	а	23,96	а	65,36	b	74,61	b	25,39	а	3,19	b								
NGC	3,77	а	2,03	b	5,56	а	28,71	b	59,94	а	69,26	а	30,74	b	2,41	а								
Water Protocol																								
WS-1	3,61	а	1,92	а	5,40	а	30,24	b	58,83	а	67,84	а	32,16	b	2,20	а								
WS-2	4,15	b	1,85	а	6,03	b	26,16	а	61,81	ab	71,99	b	28,01	а	2,74	ab								
WW	4,15	b	1,90	а	5,94	b	25,42	а	62,59	b	72,68	b	27,32	а	2,87	b								
Root system	*		***		*		*		*		*		*		*									
Water protocol			ns		*		*		*		*				*									
AxB	ns		ns		ns		ns																	

Anthocyanin profiles of berry skins

HPLC analyses

- Flavonols (not shown): No significant differences
- Flavanols (not shown): Few differences, due to the root system only
- \rightarrow M had the highest concentration of procyanidin B1 and epicatechin
- HCTA: Some differences, due to the root system only
- \rightarrow M had the highest concentration of trans-caftaric acid and trans-fertaric acid
- Stilbenes: Significant differences due to both water supply and root system
- \rightarrow WS-1 vines had the highest concentration of resveratrol and trans- ϵ -viniferin \rightarrow M had the highest concentration trans- ϵ -viniferin

	Protocatechuic acid	Trans-caftaric acid			Cis-cutaric acid		Trans-cutaric acid		Trans-fertaric acid		Polydatin		Resveratrol		Trans-ε- viniferin	
	HPLC area		HPLC area		HPLC area		HPLC area		HPLC area		HPLC area		HPLC area		HPLC area	
Root system																
M	17,89	а	26,75	b	154,94	а	112,27	а	38,72	b	354,84	а	127,73	а	7,31	b
Ρ	14,78	а	24,18	ab	112,91	а	94,27	а	28,89	ab	287,15	а	100,94	а	5,00	а
NGC	16,36	а	21,64	а	111,19	а	98,29	а	26,39	а	373,48	а	105,65	а	6,18	ab
Water Protocol																
WS-1	19,40	а	24,62	а	119,76	а	103,75	а	34,38	а	348,30	а	136,86	b	7,58	b
WS-2	16,10	а	23,69	а	124,01	а	98,39	а	28,42	а	320,27	а	85,96	а	5,15	а
WW	13,53	а	24,27	а	135,26	а	102,70	а	31,19	а	346,90	а	111,50	ab	5,76	ab
Root system	ns		*		ns		ns		*		ns		ns		*	
Water protocol	ns		ns		ns		ns		ns		ns		*		*	
AxB	ns		ns		ns		ns		ns		ns		ns		ns	

Phenolic compounds detected by HPLC in berry skins

Gene expression (qRT-PCR)

only WS1 and WW at maturity REFERENCE \rightarrow WW in each root system

- 5 structural genes
- PAL: No differences
- F3'H (A): up-regulated in NGC-WS
- F3'H (B): No differences
- FLS: up-regulated in P-WS, NGC-WW
- DRF: WS always up-regulated
- 5 genes coding for TFs
- MYB 14: up-regulated in P-WS, NGC-WS, M-WW
- MYBC2-L3: WS always down-regulated
- MYB4R1: up-regulated in M-WS, NGC-WS
- NAC 44: WS always up-regulated
- NAC 60: up-regulated in P-WS, NGC-WS

→ application of early water stress caused lasting effects altering gene expression in berry skins at maturity

Expression profiles of 8 selected genes (qRT-PCR). Ct value with $2^{-\Delta\Delta Ct}$ method.

miRNA expression (qRT-PCR)

• miR395:

Up-regulated in P-WS, down-regulated in M-WS, \rightarrow up-regulated in the presence of drought stress in *Oryza sativa* (Zhou *et al.*, 2010)

• miR398:

Up-regulated in P-WS, Normally, down-regulated to dissipate oxidative stress in plant tissues. (Sunkar *et al.*, 2006; Zhu *et al.*, 2011)

• miR858:

Down-regulated in M-WS, P-WS → level of mRNAs coding for MYB TFs is up-regulated WS grafted vines

Expression profiles of 3 selected miRNAs (qRT-PCR). Ct value with $2^{-\Delta\Delta Ct}$ method.

GENERAL CONCLUSIONS:

- Some genetic determinants (both genes and miRNAs) involved in the phenylpropanoid pathway and stress response were identified as influenced by the rootstock
- Main effects on grape quality charged to the secondary metabolism
- \rightarrow anthocyanins, stilbenes
- ightarrow more significantly modulated in the vines grafted on 1103 Paulsen
- Early water stress modulated the expression of genes and miRNAs involved in secondary metabolism

→ further investigation is needed!

Thanks for your attention!

