CLIMATE RESILIENT CROPS IN HOT-SPOT REGIONS OF CLIMATE CHANGE

The Case of Quinoa in Burkina Faso

PhD candidate JORGE ALVAR-BELTRÁN jorge.alvar@unifi.it

PhD on Agricultural and Environmental Sciences (Cycle XXXII) Date and Place: 28th February 2020, University of Florence-DAGRI, Italy

SUPERVISORY BOARD

Prof. Simone Orlandini Prof. Anna Dalla Marta Prof. Jacob Sanou Dr. Abdalla Dao Dr. José Luís Camacho

RESEARCH COLLABORATION

World Meteorological Organization (WMO) Switzerland

Flemish Institute Tech. Research (VITO) Belgium

> Institut de l'Environnement et Recherches Agricoles (INERA) Burkina Faso

Table of Contents

1. Background Information

2. Problem Identification & Justification

3. Understanding Agriculture & Climate Change

4. Research Approach: Quinoa

5. Tackling Problem: Quinoa Field Experiments

6. Tackling Problem: Climatic Chamber Experiments

7. Tackling Problem: Crop Modelling

8. Tackling Problem: Climate Modelling

9. Conclusions, Discussion & Further research

10. Main Outcomes & Results Dissemination

1. Background Information

Similar to the size of Italy
Landlocked (6 countries)

 \circ 21m people (Δ 3% year) \circ 70 languages

1700€ year⁻¹ GDP capita⁻¹
31% agriculture GDP
90% workforce in agriculture

Very warm (28.3°C)
Rainfall season (May-Oct)
300, 600 & 900mm year⁻¹
Land degradation (9m ha year⁻¹)

Maize, millet, rice, sorghum, sesame
Maize: 2t ha⁻¹ (BF) vs. 11t ha⁻¹ (USA)
Rice: 2t ha⁻¹ (BF) vs. 8t ha⁻¹ (USA)
Sorghum: 1t ha⁻¹ (BF) vs. 5t ha⁻¹(USA)
Yield reduction by 2050 (>15% rice, maize & sorghum)

2. Problem Identification & Justification

MULTI-FACTORIAL PROBLEM

- Warmest country on earth (1/195)
- High undernourishment rates (157/195)
- High vulnerability to climate related hazards (162/181)
- High exposure to climate related hazards (172/192)
- Low adaptive capacity (155/180)

JUSTIFICATION

National Adaptation Plan for agriculture (4/10 objectives)

- 1. Short cycle and drought resistant varieties (short term)
- 2. Soil and water conservation strategies (short term)
- 3. Apply water saving irrigation techniques (short term)
- 4. Improve access to climate information services (medium term)

3. Understanding Agriculture & Climate Change

AIM

To evaluate the risks of agriculture to climate change

METHODS

- 150 surveys in 3 agro-ecological zones
 - Climate hazards
- \bullet 17 question surveys $_{\odot}\,$ Adaptation to climate change
 - Vulnerability & climate services

3. Understanding Agriculture & Climate Change

RESULTS

AGRICULTURAL ADAPTATION

Brochures

4. Research Approach: Quinoa

- Chenopodium quinoa Willd. Herbaceous, C3 crop
- Traditionally grown in the Andes (7000 years)
- Thrive in a wide range of ecosystems: Altiplano, Inter-valleys, Salares, Coastal and Yunga
- Genetic diversity (over 16 thousand accessions)
- Abiotic stress resilience:
 - a) Drought (200-400 mm)
 - b) Halophyte (sea water of 600 mM NaCl)
 - c) Frost (-14°C seedling & -4°C milky grains)
 - d) Heat (+40°C)
 - e) pH versatile & poor soils (sandy & low nutrient)
- High nutritional properties
 - Essential amino-acids & high protein content
 - Rich in Ca, Fe & Mg; vitamins A, B2 & E
 - Gluten free

5. Tackling Problem: Quinoa Field Experiments

AIM

• Evaluate the adaptability of quinoa in the Sahel

EXPERIMENTAL DESIGN

5. Tackling Problem: Overcoming Research Barriers

EXPERIMENTAL DESIGN

<u>2017-2018</u>

Randomized Split-Split-Block design

Block: irrigation (100, 80 & 60% PETc)
Split: genotype (Titicaca & Negra Collana)
Split: fertilization (100, 50 & 25 kg N ha⁻¹)

18 treatments x 3 rep. (54 exp. plots)

DATA ANALYSIS

<u>Analysis of Variance</u> (Two way ANOVA) •Analyse the differences among groups of means

<u>Post-hoc Tukey HSD test</u> (p-value <0.05)(pairwise comparison groups of means)
Test factor interaction (irrigation vs. N-fertilization)
Test main factor effect (irrigation & N-fertilization)
More sensitive to SD than Fisher LSD test
Can be used for both equal/unequal sample sizes per group

<u>2018-2019</u>

Randomized Split-Block design

Block: irrigation (100 & 50% PETc)
Split: fertilization (100 & 0 kg N ha⁻¹)

4 treatments x 4 rep. (16 exp. plots)

5. Tackling Problem: Overcoming Research Barriers

IRRIGATION SCHEDULING

<u>Evapotranspiration</u> (ETo in mm) <u>ETo = 0.0023 (Tmean + 17.78)*Ro * (Tmax - Tmin) ^ 0.5</u> <u>Ro</u> is the solar radiation (1 mm day⁻¹ = 2.45 MJ m⁻² day⁻¹). <u>Ro</u> monthly adjusted during the growing season

Potential Crop ET (PETc in mm) PETc = ETo * Kc Kc is the crop coefficient. Kc weekly adjusted as follows: Kc at E, 2L, 4L, 8L, PF, F, MG, PG, PM Kc values: 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 0.9, 0.8, 0.7

Weeks after sowing

Total Irrigation (TI in 1 m⁻² or mm)

$$TI = \left(\left(\frac{m^3}{1000} \right) \div m^2 \right) - 70$$

70 liters of water to attain drip-irrigation working pressure

Source: Hargreaves & Samani, 1985; Allen et al. 1998; García et al. 2003

5. Tackling Problem: Quinoa Field Experiments

FIELD & LAB MEASUREMENTS

Irrigation

Amount, frequency & timing

Agro-meteorology

- Tmax, Tmin, T mean, precipitation, RH & PETc
- Soil temperature
- Solar radiation & photoperiodicity

Plant phenology and physiology

- Time E, 2L, 4L, 8L, PF, F, LS, MG, PG, PM
- Plant height, panicle length & width, root architecture, n° of branches & stem diameter
- Kernel weight, biomass/yield production & canopy cover

Soil characteristics

pH, soil texture, org. matter, N, C, P, K content & bulk density

5. Tackling Problem: Quinoa Field Experiments

RESULTS

TITICACA VS. NEGRA COLLANA

Crop variety	Titicaca	Negra Collana						
Seed yield (kg ha ⁻¹)	686 a	102 b						
Biomass (kg ha ⁻¹)	1686 a	1725 a						
Average of all treatments (irrigation & N-fertilization) & sowing dates (4-Nov and 8-Dec). Experiment 2017-2018								

<u>TITICACA</u> (Two year experiment 4-sowing dates)

- Main effect N-fertilization (p>0.05).
- Main effect Irrigation (p<0.05). 100 & 80 vs. 60 & 50 PETc
- Sowing dates (p<0.05). 25-Oct vs. 8-Dec</p>

Sowing date	25-Oct	4-Nov	19-Nov	8-Dec	
Seed yield (kg ha ⁻¹)	1128 a	898 ab	659 ab	540b	

Titicaca: best irrigation schedules (FI & PD) & all N-fertilization levels (100, 50, 25 & 0 kg N ha⁻¹).

6. Tackling Problem: Climatic Chamber

AIM

- To study the effect of heat-stress on seed-germination & flowering
- To identify the most suitable sowing dates (crop calendars)

EXPERIMENTAL DESIGN

34

- Cv. Titicaca (the most extended variety in the Sahel)
- Factor levels: 30, 34, 38, 42, 46°C (6h day⁻¹ for 10 days)
- One way ANOVA

RESULTS

6

5

4

3

2

1

0

30

Grain yield per plant (g)

 Relationship between heat-stress at flowering & seed yield at harvest

38

Heat-stress (°C)

42

7. Tackling Problem: Crop Modelling

AIM

 Calibrate & validate quinoa in AquaCrop for a new environment under different irrigation schedules

EXPERIMENTAL DESIGN

- T₁, T₃ (Full irrigation-FI) 100% PETc
- T_5 , T_6 , T_8 (Progressive drought-PD) 70-90% PETc
- T_4 , T_7 , T_9 (Deficit irrigation-DI) 50% PETc
- T_2 , T_{10} (Extreme deficit irrigation-EDI) <50% PETc

MODEL CALIBRATION

- Climate: Tmax, Tmin, PETc, precipitation & RH
- Crop: development, production & response to stress
- Management: irrigation method & field practices
- Soil: texture, permanent wilting point & field capacity

MODEL VALIDATION

Seed yield, biomass & canopy cover

7. Tackling Problem: Crop Modelling

RESULTS

- PD vs. FI (13% yield reduction but 25% water savings)
- Yield & Biomass calibration (NRMSE = 11 & 18%)
- Yield & Biomass validation (NRMSE =15 & 9%)

Normalised Root Mean Square Error (NRMS) $RMSE = \sqrt{\frac{1}{N}} \sum_{i=1}^{N} (Pi - Oi)^2$; $NRMSE = \frac{RMSE}{\hat{p}} \times 100$ Q is the observed value, P is the simulated value and

 O_i is the observed value, P_i is the simulated value and \hat{P} is the simulated mean.

8. Tackling Problem: Climate Modelling

AIM

To estimate temperature rise & evaluate its impact on crop yield

EXPERIMENTAL DESIGN

PAST CLIMATE

- 3 weather stations
- 45 years Tmax & Tmin daily data (1973 2017)

FUTURE CLIMATE SIMULATIONS

- 3 weather stations
- 43 GCMs
- 2 climate scenarios (RCP 4.5 & RCP 8.5)
- 95 years Tmax & Tmin daily data simulations (2006 2100)

CROP GROWTH SIMULATIONS

- 3 agro-ecological zones (Sahel, Soudano-Sahelian & Soudanian)
- 4 sowing dates (October, November, December & January)
- 4 time horizons (2020, 2025, 2050 & 2075)
- 3 soil textures per agro-ecological zone
- 2 climate scenarios (RCP 4.5 & RCP 8.5)

8. Tackling Problem: Overcoming Research Barriers

CLIMATE MODELLING

<u>Past climatic data</u> (Tmax & Tmin) Daily gaps for 3 weather stations (1973-2017)

	/	JULIAN CALENDAR	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982
<i>— (</i>	$\Sigma T daily_{1973 to 1982}$	1	32.6	33.0	30.0	33.0	34.0	32.0	33.0	31.0	32.6	34.4
T max/min =	10	2	34.0	34.0	33.0	33.0	35.0	34.0	32.0	33.0	30.0	34.1
	10	3	33.2	33.2	33.0	34.0	35.0	35.0	31.0	32.0	30.0	35.6
		4	33.0	33.0	33.0	33.0	35.0	34.0	32.0	32.0	31.0	34.1

Future climate data

Delta method for monthly mean T, (2018-2100, RCP 4.5 & 8.5, 3 weather stations)

 $Tmean = \left(\frac{\Sigma Tmax \ 2006_{to \ 2017}}{12} - \frac{\Sigma Tmean \ 2006_{to \ 2017}}{12}\right) + Tmean \ _{2018 \ to \ 2100}$

Monthly-year mean for 43 GCMs

	MEAN KCT 4.5							ODSERVED/SIMULATED MAA (RCT 4.5)					"	
	October	November)ecembe	January	February	March			October	November	December	January	February	March
2006	30.8	28.2	24.3	24.5	27.4	31.2	27.7	2006	39.2	37.1	33.6	32.8	36.4	40.2
2007	30.9	28.4	24.5	24.1	27.1	30.8	27.6	2007	39.6	38.4	34.2	31.7	36.9	40.0
2008	30.8	27.9	24.5	24.4	27.1	30.5	27.5	2008	38.4	37.3	34.5	30.0	35.9	40.5
2009	31.3	28.5	24.6	24.5	27.3	31.0	27.9	2009	38.8	36.6	35.7	32.2	38.3	40.8
2010	31.1	28.5	24.3	24.5	27.5	31.1	27.8	2010	36.9	38.0	34.3	34.6	39.3	39.9
2011	30.9	28.3	24.4	24.5	27.4	31.0	27.8	2011	39.0	37.7	32.3	32.7	36.3	41.4
2012	31.0	28.4	24.3	24.5	27.1	30.8	27.7	2012	38.0	38.5	34.1	31.4	35.8	38.5
2013	31.1	28.4	24.6	24.4	27.2	31.3	27.8	2013	38.6	37.9	33.3	32.2	36.4	42.4
2014	31.3	28.7	24.8	24.5	27.3	31.2	28.0	2014	39.2	38.5	33.8	33.7	35.4	39.8
2015	31.0	28.7	24.7	24.7	27.7	31.4	28.1	2015	39.1	37.3	30.5	31.6	36.9	39.4
2016	31.2	28.6	24.5	24.7	27.8	31.2	28.0	2016	39.5	38.4	34.7	31.7	35.0	39.6
2017	31.4	28.9	24.7	24.8	27.5	31.3	28.1	2017	39.4	37.2	32.8	32.8	36.1	41.5
2018	31.0	28.8	25.0	24.8	27.8	31.2	28.1	2018	38.6	38.0	33.9	33.5	36.8	40.0
2019	31.1	28.4	24.4	24.8	27.4	31.0	27.9	2019	38.7	37.6	33.4	33.5	36.4	39.8
2020	31.2	28.7	24.8	24.8	27.7	31.3	28.1	2020	38.8	37.9	33.7	33.6	36.7	40.1
2021	31.4	28.9	24.9	25.0	28.0	31.5	28.3	2021	38.9	38.1	33.9	33.7	37.0	40.3

8. Tackling Problem: Climate Modelling

FUTURE TRENDS

■ Temp. 2100: RCP 4.5 & 8.5 (+1.7°C & +4.9°C)

	Max mean Temperatures (°C) (Oct March) *RCP 8.5										
	2025 2050 2075 2100										
Dori (A)	36.7	38.1	39.6	41.2							
Ouaga (B)	37.2	38.5	40.0	41.6							
Bobo (C)	34.7	36.1	37.6	39.2							

8. Tackling Problem: Climate Modelling

RESULTS

9. Conclusions, Discussion & Further Research

SURVEYS

- Farmers are aware of changing climatic patterns
- Highest vulnerability & exposure to natural hazards (Sahel)
- SWC strategies are largely widespread (Sahel)
- Market-oriented & conventional agriculture (Soudanian)

CONTROLLED CONDITIONS

- •38°C is the critical temperature for quinoa pollination and seed-germination
- •At 38°C there is a 30% yield loss & 50% decrease germination rates
- Optimal growing period
 - Sahel: November-February
 - \circ Soudano-Sahelian: June-February*
 - \circ Soudanian: all year round*

*Quinoa is highly affected by water-logging (Dao et al., 2016)

9. Conclusions & Discussion & Further Research

FIELD EXPERIMENTS & CROP MODELLING

- Yields \geq 1t ha⁻¹ under FI and PD (\approx 300-400mm)
- End October optimal sowing time (Soudanian zone)
- Short cycle (Titicaca-90DAS) rather than long cycle (Negra Collana-150DAS)
- N-fertilization: 25 kg N ha⁻¹
- Frequent irrigation (2/3 events week⁻¹) & little amount (\approx 8mm irrigation event⁻¹)
- ■PD vs. FI (yield reduction of 13% but water savings of 25%)
- Water requirements: sugar-cane (>1500mm); maize (800 mm); rice & cotton (>700mm); sorghum, groundnuts & millet (500mm)
- •N-requirements of maize: 250-300 kg N ha⁻¹
- •High-temperature tolerance at flowering: rice, maize, sorghum & tomato (34-35°C)

Source: FAO, 1992; FAO, 2006: Prasad et al., 2011

9. Conclusions & Discussion & Further Research

CLIMATE MODELLING

- ■Temperature RCP 4.5 (+1.7°C) & RCP 8.5 (+4.9°C)
- •Yield loss of main crops (rice, maize, millet), but yield enhancement quinoa (33%)
- Doubling CO₂ concentrations can increase yields of C3 crops (Ceccarelli et al., 2010)

9. Conclusions & Discussion, Further Research

FURTHER RESEARCH

<u>QUINOA</u>

- Plant breeding: higher yields (lower to other regions) (Jarvis et al., 2017)
- Plant breeding: heat/wind/water-logging tolerant (spatio-temporal extension)
- Social & economic: use/acceptance of quinoa & agricultural value chain

CLIMATIC TRENDS

- Precipitation patterns: false departure of the rainy season
- Impact of increasing temperatures and CO₂ concentrations in main crops

THESIS CONCLUSION

Quinoa has a great potential in the Sahel in terms of adaptability to abiotic stresses & must be promoted as an alternative crop to alleviate food insecurity during the dry-season and under changing climatic conditions.

10. Main Outcomes & Results Dissemination

RESEARCH PAPERS

- Alvar-Beltrán, J. et al. (2019). Effect of Drought, Nitrogen Fertilization, Temperature and Photoperiodicity on Quinoa Plant Growth and Development in the Sahel. Agronomy, 9(10), 607. (published)
- Alvar-Beltrán, J. et al. (2019). Effect of drought and nitrogen fertilization on quinoa (*Chenopodium quinoa* Willd.) under field conditions in Burkina Faso. *Italian Journal of Agrometeorology*, (1), 33-43 (published)
- Alvar-Beltrán, J. et al. (2019). Can global warming hinder the potential of quinoa in the Sahel? European Journal of Agronomy (under review)
- Alvar-Beltrán, J. et al. (2019). Heat-stress effect on quinoa (*Chenopodium quinoa* Willd.) under controlled climatic conditions: the potential of quinoa in Burkina Faso. *Agricultural Science* (accepted)
- Alvar-Beltrán, J. et al. (2019). Irrigation scheduling of drought-resistant quinoa in Burkina Faso with AquaCrop model. Irrigation Science (under review)
- Alvar-Beltrán, J. et al. (2019). Farmer's awareness and agricultural adaptation to climate change in Burkina Faso's different agro-climatological zones. *Environmental Management* (under review)

10. Main Outcomes & Results Dissemination

SEMINARS & CONFERENCES

- FAO, Rome-Italy (Feb. 2020)
- RAMAO, Granada-Spain (Oct. 2019)
- CUCS, Trento-Italy (Sep. 2019)
- WMO-RTC, Nanjing-China (July 2019)
- INERA, Bobo Dioulasso-Burkina Faso (May 2018 & Feb. 2019)
- CESAO, Bobo Dioulasso-Burkina Faso (Feb. 2019)

OTHERS

- I quinoa tasting, Bobo Dioulasso-Burkina Faso (Feb. 2019)
- I press release (<u>https://lefaso.net/spip.php?article88127</u>), <u>Burkina Faso</u> (Feb. 2019)
- I farmer workshop, Ouaga-Burkina Faso (April 2019)
- 3 month consultancy at WMO-Rwanda & Senegal (July-Sept. 2018)

THANK YOU !

Pics de Sindou, Banfora

Crop Perspectives

PRODUCTION & RESEARCH

- Field trials 2 agro-ecological zones
- 3 MSc and 1 PhD thesis (adaptability & practices)
- 50 farmers growing quinoa
- Production of 200 kg (scaling-up crop production)
- 0.5-1kg seeds (key stakeholders) for 500 1000m²

ACCEPTANCE & USE

- 2 quinoa tasting events (INERA & UNIFI)
- Multiple workshops: benefits & adaptability to climate change (authorities, technicians, agro-business and farmers)
- High production acceptance by farmers
- Consumption acceptance & use of quinoa not yet evaluated

